Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Navarro, Ramón; Jedamzik, Ralf (Ed.)
- 
            Geyl, Roland; Navarro, Ramón (Ed.)
- 
            Geyl, Roland; Navarro, Ramón (Ed.)A consortium of industrial and academic partners, coordinated by TNO, is working on the realization of a 620mm adaptive secondary mirror (ASM) for the University of Hawaii’s 2.2-meter telescope. The ASM consists of a 620mm-diameter slumped convex aspherical mirror shell, manipulated by 210 variable-reluctance actuators mounted on a light-weighted support frame. The mirror shell is manufactured to the required accuracy at low cost through slumping. The actuators are driven by dedicated PWM current drivers and commanded through a real-time FPGA-based interface. After successful performance testing of several laboratory prototypes, this project will provide the definitive on-sky demonstration of this new technology. We report on the manufacturing and testing of the major subsystems, and on the integration status of the ASM as a whole.more » « less
- 
            Geyl, Roland; Navarro, Ramón (Ed.)
- 
            Geyl, Roland; Navarro, Ramón (Ed.)With the advancements of ultra-high-precision micro-optics fabrication technologies, it is now possible to fabricate integral field units (IFUs) with slicer mirror width of 30 m or less. This paper describes a 36-um machined image slicer IFU (MISI-36) for the Diffraction-Limited near-IR Spectropolarimeter (DL-NIRSP) of the Daniel K. Inouye Solar Telescope (DKIST). MISI-36 has a unique 2-section image slicer design, and is consists of a monolithic image slicer block with 112 micro slicer mirrors, a parabolic collimator, a monolithic flat mirror array consists of 112 fold mirrors, and a monolithic spherical mirror array consists of 112 spherical mirrors. We have successfully fabricated a prototype device using Canon Inc.’s diamond-cutting CNC, and conducted a preliminary performance evaluation using an experimental bench-top spectrograph similar to the spectrograph of DL-NIRSP. We will present the optical design and optical performances of the MISI-36 prototype.more » « less
- 
            Geyl, Roland; Navarro, Ramón (Ed.)Efficiently coupling light from large telescopes to photonic devices is challenging. However, overcoming this challenge would enable diffraction-limited instruments, which offer significant miniaturization and advantages in thermo-mechanical stability. By coupling photonic lanterns with high performance adaptive optics systems, we recently demonstrated through simulation that high throughput diffraction-limited instruments are possible (Lin et al., Applied Optics, 2021). Here we build on that work and present initial results from validation experiments in the near-infrared to corroborate those simulations in the laboratory. Our experiments are conducted using a 19-port photonic lantern coupled to the state-of-the-art SCExAO instrument at the Subaru Telescope. The SCExAO instrument allows us to vary the alignment and focal ratio of the lantern injection, as well as the Strehl ratio and amount of tip/tilt jitter in the beam. In this work, we present experimental characterizations against the aforementioned parameters, in order to compare with previous simulations and elucidate optimal architectures for lantern-fed spectrographs.more » « less
- 
            Geyl, Roland; Navarro, Ramón (Ed.)The optical fiber integral field unit (IFU) built to feed the near infrared (NIR) spectrograph for the 11-meter Southern African Large Telescope (SALT) has undergone prototyping and rigorous performance testing at Wash- burn Astronomical Laboratories of the University of Wisconsin-Madison Astronomy Department. The 43 m length of 256 fibers which make up the object and sky arrays and spares are routed from the SALT payload down into the spectrograph room in four separate cables. The IFU covers 344 arcsec2 on the sky, with the object array spanning a 552 arcsec2 near-rectangular area at roughly 56% fill-factor. Companion papers describe the mechanical design of the fiber cable that mitigates potential sources of mechanical strain on the optical fiber (Smith et al.) and details of the spectrograph (Wolf et al.). Here we present the results of the performance testing of various test cables as well as performance testing and end-to-end mapping of the fully-assembled science cable. The fiber optics experience an extreme temperature gradient at the ingress to the instrument enclosure held at -40 ◦C during operation. We find an increase in focal ratio degradation (FRD) when holding progressively longer lengths of test fiber at reduced temperature. However, we confirm that this temperature dependent FRD is negligible for our designed length of cold fiber. We also find negligible contributions to FRD from the rubber seal that breaches the room temperature strain relief box and the cold instrument enclosure. Our measure- ments characterize performance including the effects of internal fiber inhomogeneities, stress induced from fiber handling and termination, as well as any imperfections from end-polishing. We present the room-temperature laboratory performance measurements of the fully-assembled science cable; the effective total throughput the fiber cable delivers to the spectrograph collimator is 81±2.5% across all fibers accounting for all losses.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
